تولید هیدروژن از تجزیه نوری آب با استفاده از الکترولیز الکتروشیمیایی نوری، مستقیمترین روش برای تولید هیدروژن با کمک نور خورشید است. تیتانیای نانولولهای یکی از نویدبخشترین ماده آند نوری برای تجزیه آب با استفاده از پرتوهای خورشیدی، است. اکنون محققان دانشگاه آرکانزاس و دانشگاه نودا، برای افزایش راندمان تبدیل الکتروشیمیایی نوری آندهای نوری تیتانیای نانوساختار، یک فرآیند مبتنی بر اصلاح سطحی پلاسمایی توسعه دادهاند.
ابتدا آندهای نوری تیتانیایی با ساختارهای نانولولهای با استفاده از آندیزاسیون الکتروشیمیایی ورقههای نازک تیتانیوم تولید شدند. سپس سطوح این آندهای نوری با پلاسمای نیتروژن کمفشار اصلاح شد. این محققان متوجه شدند که اصلاح پلاسمایی فعالیت الکتروشیمیایی نوری این نمونهها را به شدت افزایش میدهد. چگالی جریان نوری مواد اصلاحشده با پلاسما تقریباً80 درصد بیشتر از الکترودهای اصلاحنشده، بود.
این اصلاح پلاسمایی آلودگیهای سطحی را حذف کرده، تلههای حامل بار را حداقل کرده و دوپکننده نوع N سطح این آند نوری را با نیتروژن فراهم میکند. این افزایش فعالیت نوری به اصلاح سطحی بوسیله عملیات پلاسمایی و افزایش جذب نور مرئی بواسطه دوپکننده نیتروژنی سطح این آند نوری (باریک کردن باندگپ) ، نسبت داده میشود. عملیات پلاسمایی همچنین زبری سطح و قابلیت ترشوندگی را افزایش داده و در نتیجه سطح تماس فصل مشترک الکترود/الکترولیت را برای الکترولیز بزرگتر میکند.
این محققان با توجه به نتایجشان، اعتقاد دارند که ترکیب همافزایی نانوساختارکردن آندهای نوری و اصلاح سطحی آنها میتواند تولید الکتروشیمیایی هیدروژن را با استفاده از نور خورشید و الکترودهای نیمههادی پایدار از نظر نوری افزایش دهد.
این محققان نتایج خود را تحت عنوان "افزایش راندمان الکتروشیمیایی نوری آندهای نوری TiO2 نانولولهای با استفاده از اصلاح سطحی به کمک پلاسمای نیتروژن" در مجله Nanotechnology منتشر کردهاند.
http://nanotechweb.org/cws/article/tech/38105
Hydrogen production from sunlight by splitting water using photoelectrochemical electrolysis is the most direct method for solar-to-hydrogen conversion. Looking at the process in more detail, nanotubular titania (TiO2) emerges as one of the most promising photo-anode materials for water splitting using solar radiation thanks to the combination of a band structure that straddles the reduction and oxidation potential of water, a high corrosion resistance in aqueous electrolytes and the material's low cost.
So far, so good. However, the large bandgap of TiO2 (3.0–3.2 eV) allows photoconversion of only UV radiation, which comprises less than 7% of the solar energy spectrum. Thus, bandgap reduction of TiO2 is a key requirement for effective solar-to-hydrogen conversion.
In a recent study published in Nanotechnology, researchers at the University of Arkansas at Little Rock and the University of Nevada, Reno, developed a process based on nanostructure synthesis and plasma surface modification to enhance the photoelectrochemical conversion efficiency of titania photoanodes.
Titania photoanodes with nanotubular structures were synthesized by electrochemical anodization of titanium thin foils. The photoanode surfaces were then subjected to low-pressure nitrogen plasma. It was found that the plasma treatment significantly enhanced the photoelectrochemical activity of the samples; the photocurrent density of plasma treated material was approximately 80% higher than that of the control electrodes.
The plasma treatment removed surface contaminants, minimized the charge carrier traps and provided n-type doping of the photonaode surface with nitrogen. The increase in photoactivity was ascribed to the surface modifications by plasma treatment and increased absorption of visible light due to nitrogen doping of the photoanode surface, narrowing the bandgap. XPS analysis confirmed doping of nitrogen in the TiO2 surface. Plasma treatments also increased surface roughness and wettabilty, resulting in a higher electrode/electrolyte interfacial contact area for enhancing electrolysis.
While plasma surface doping does not hinder an efficient transport of charge carrier through the bulk material, further advancement of the method is needed to provide effective n-doping over the depth of the depletion layer for efficient light absorption and charge separation.
Based on its results, the group believes that a synergistic combination of nanostructure synthesis of photoanodes and surface structure and chemical modification may advance photoelectrochemical generation of hydrogen using photostable semiconducting electrodes.
This work was performed at the University of Arkansas at Little Rock and University of Nevada, Reno, and was supported by the United States Department of Energy and Arkansas Science and Technology Authority. Dr Rajesh Sharma is a Research Faculty at the Graduate Institute of Technology at the University of Arkansas at Little Rock. Prajna P Das and Vishal Mahajan are graduate students at the University of Nevada, Reno. Dr Mano Misra is professor at the Department of Chemical and Metallurgical Engineering at the University of Nevada, Reno. Jacob Bock is an undergraduate student at the University of Arkansas at Little Rock. Dr Steve Trigwell is manager of the Applied Science and Technology Laboratories at ASRC Aerospace, in the Kennedy Space Center, Florida. Dr Alexandru Biris and Dr Malay Mazumder are assistant professor and Emeritus professor respectively at the Applied Science Department at the University of Arkansas at Little Rock.